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SUMMARY

An algorithm to generate samples with approximate first-order, second-order, third-order, and fourth-order
moments is presented by extending the Cholesky matrix decomposition to a Cholesky tensor decomposition
of an arbitrary order. The tensor decomposition of the first-order, second-order, third-order, and fourth-order
objective moments generates a non-linear system of equations. The algorithm solves these equations by
numerical methods. The results show that the optimization algorithm delivers samples with an approximate
residual error of less than 1016 between the components of the objective and the sample moments. The
algorithm is extended for a n-th-order approximate tensor moment version, and simulations of non-normal
samples replicated from distributions with asymmetries and heavy tails are presented. An application for
sensitivity analysis of portfolio risk assessment with Value-at-Risk (VaR) is provided. A comparison with
previous methods available in the literature suggests that the methodology proposed reduces the error of the
objective moments in the generated samples.‡ Copyright © 2016 John Wiley & Sons, Ltd.
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In this research, we consider simulation methods, and we simulate random processes with prede-
termined moments and cumulants. The main problem is to simulate samples where the intended
statistics of the samples must have a desired moment value, such as the mean, or the second-order
matrix. The moments of a distribution can affect the shape and even all the characteristics of the
distribution; for example, in the case of the normal distribution, we need only the first-order and
second-order moments to determine the entire shape of the distribution. The statistical moments are
defined from the moment generating function (as well as the central moments, or cumulants).

In this paper, we develop a Monte Carlo method that generates samples with approximate first-
order, second-order, third-order, and fourth-order tensor moments. The moments and cumulants
are tensors, and for this reason we introduce some concepts of tensor spaces. Problems with the
constraint on the first-order and second-order moment have a solution. Using random orthogonal
matrices, [1] has found a solution of the problem of Monte Carlo simulations with exact skewness
and kurtosis, using the measures defined by [2]; however, Mardia’s measures report similar skewness
values for different elliptical distributions. As a result, Ledermann’s methodology will produce the
same simulations for elliptical distributions that have equal skewness and kurtosis but different
third-order and fourth-order moments. Our research produces simulations not with a mean-variance-
skewness-kurtosis objective value, but with all first four-order objective moments.

Let x be a multivariate random variable of dimension p with components denoted by x.j /; j 2
¹1; : : : ; pº, whose first two moments are finite and known. The problem of generating samples from
x with exact first-order and second-order moments has been addressed by several authors. This
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problem consists in generating a matrix of N samples QX from x, where each row of the matrix
QX.j; W/ is a vector of dimension p, j 2 ¹1; : : : ; N º. The replicas are generated with a pseudo-
random algorithm, and then a function is applied to give the desired sample moments. The samples
are pairs ¹ QX.j; W/; �.j /º, where �.j / is the probability density associated with the sample.

In [3], the methods used to generate simulations of random variables with exact mean-covariance
are classified in two groups: methods that constrain the probabilities ¹�.j /º, and methods that con-
strain the scenarios ¹ QX.j; W/º, j 2 ¹1; : : : ; N º. The methods that constrain the probabilities are
[4, 5], and [6]. The methods that constrain the scenarios are [7–9], and [1], where the spectral
decomposition and the QR decomposition methodologies are the most used. The method used in
[3] constrains the scenarios and is based on the generation of matrix B, such that B QX will have the
desired moments. This method offers an improvement in the performance of the size of the matrix
needed to create the samples. In [3], this constrained scenarios’ algorithm is applied to simulate the
correlation matrix of a portfolio of plain vanilla options. Meucci offered the method as an alterna-
tive for stress-testing, but did not produce any empirical test to measure the benefits of using this
exact method.

The structure of this paper is as follows: Section 1 introduces the tensor notation; Section 2
reviews the spectral decomposition method for exact mean-covariance (first-order and second-order
moments) simulations. Section 3 develops the algorithm proposed to solve the problem of Monte
Carlo approximate first-order, second-order, third-order, and fourth-order moments simulations.
Section 4 presents a numerical approximation for the tensor moment algorithm, optimizes the algo-
rithm, analyzes the performance and provides some examples of non-normal samples generation.
Section 5 compares the Monte Carlo tensor moment simulation with other symmetric tensor decom-
position methods. In Section 6, the algorithm is generalized for the n-th-order approximate tensor
moment case. Section 7 presents an application to portfolio risks assessment. In Section 8 some
concluding remarks are presented and possible extensions suggested.

1. DEFINITIONS OF HIGHER-ORDER TENSOR MOMENTS

The seminal book of [10], and the later book of [11] are the main references for the use of tensors
in statistics. In fact, the mathematical definition of a moment of n-th order is a tensor of n-th order.
Kendall’s book made an introduction to tensor cumulants and tensor moments, while McCullagh
described all the mathematical theory behind tensors and their use in statistics. In the following
sections, we give a brief introduction to tensor calculus, as we will use it to describe the tensor
decompositions approach.

1.1. The summation notation

We use the exponent as an indicator of the tensor’s component.

Definition 1.1
Let x and a be vectors of dimension p with components x.j / and a.j / for j 2 ¹1; : : : ; pº, respec-
tively. We are going to use the summation convention as it is the appropriate notation for working
with tensors. We define the object aj xj as:

aj xj �
pX
iD1

a.j /x.j /; (1)

where every common index, such as j in (1), denotes a summation of the components of tensors.

The vectors x and a are considered first-order tensors, and (1) is considered a tensor of zero-th
order. If we refer to the vector and matrix notation, let x and a be two vectors of dimension p; an
equivalent expression to (1) will be:

aj xj � a0x:

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:825–847
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Definition 1.2
Let A be a matrix of dimension p � p. The matrix A is a tensor of second-order. The equivalent
summation notation of the vector expression x0Ax is:

Aj1;j2xj1xj2 �
pX

j1D1

pX
j2D1

A.j1; j2/x.j1/x.j2/; (2)

with j1; j2 2 ¹1; : : : ; pº.

Definition 1.3
Let A be a tensor of third-order; the following tensor product will produce a tensor of zero-th order,
as the result of (1) and (2),

Aj1;j2;j3xj1xj1xj3 �
pX

j1D1

pX
j2D1

pX
j3D1

A.j1; j2; j3/x.j1/x.j2/x.j3/; (3)

with j1; j2; j3 2 ¹1; : : : ; pº.

In (3), there is not an equivalent vector notation for the expression, and it is for that reason that
we use tensor notation for describing higher-order moments and cumulants.§

1.2. Tensor moment and tensor cumulant definition

Definition 1.4
Let x be a random vector of dimension p. The characteristic function of x is defined as:

 .�; x/ D E
�
exp

�
�l1xl1 i

��
;

where E Œ�� is the expected value, l1 2 ¹1; : : : ; pº, i D
p
�1, and � is a real-valued vector. The

vector x D .x.1/; : : : ; x.p// appears after the calculation of the expected value of a function of the
random variable X . This function can be expanded into the infinite series:

 .�; x/ D 1C �l1m.1/l1 i C �l1�l2m.2/l1;l2 i
2=2ŠC �l1�l2�l3m.3/l1;l2;l3 i

3=3ŠC : : : ;

D

n�1X
jD1

�l1 : : : �ljm.j /l1;:::;lj i
j =j ŠC o.k�kn/;

(4)

which is convergent for small � . The error term o.k�kn/ satisfies,

lim
�!0

o.k�kn/

�
D 0:

The coefficient of the series, m.n/ D EŒx.l1/ : : : x.ln/�, is denoted as the tensor moment of n-th
order of x, where l1; : : : ; ln 2 ¹1; : : : ; pº.¶

Definition 1.5
Calculate the log.�/ function of (4):

log .�; x/ D
n�1X
jD1

�l1 : : : �lj k.j /l1;:::;lj i
j =j ŠC o.k�kn/:

§[11] provides an introduction for the use of tensor notation in statistics.
¶The notation m.n/ for the tensor moment of n-th-order is consistent with the notation for the components of a vector,
as we can considerm as the collection of all moments, andm.n/ the moment of order n-th.
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The coefficient k.n/l1;:::;ln D E Œ.x.l1/ �m.1I l1// : : : .x.ln/ �m.1I ln//� is denoted the ten-
sor cumulant of the n-th order of x, with m.j1I l1; : : : ; lj2/ the l1; : : : ; lj2-th component of the
j1-th-order tensor moment.

Remark 1
The covariance matrix is a tensor cumulant of second-order. There is an equivalence between the
first-order and second-order tensor moments and tensor cumulants:

m.1/ D k.1/;

m.2/l1;l2 D k.2/l1;l2 C k.1/l1k.1/l2 :

1.3. Tensor sample moments and tensor sample cumulants

Definition 1.6
Let QX be a matrix of dimension N � p, of N samples of the random variable x of dimension p; we
define the n-th-order tensor sample moment as:

M.n/l1;:::;ln D N
�1 QXj;l1 : : : QXj;ln ;

and the n-th-order tensor sample cumulant as:

K.n/ D N�1
�
QXj;l1 � NXj;l1

�
: : :
�
QXj;ln � NXj;ln

�
;

where l1; : : : ; ln 2 ¹1; : : : ; pº and NX is a matrix of dimension N � p with the sample mean vector
of QX repeated in every row.

1.4. Multivariate measures of skewness and kurtosis

The multivariate measures of skewness and kurtosis developed by [2] are the standard measures in
the literature. Fields like finance use these measures. In other fields like physical sciences, these
are also the standard measures. In multivariate statistical analysis they represent the actual frame-
work to measure deviations from normality. This is the concept that Mardia and other statisticians
used to develop different multivariate skewness measures: determine the normality of a sample, or
deviations from normality.

Mardia’s (1970) skewness and kurtosis definition: Let x D .x.1/; : : : ; x.p// be a multivariate
random vector. Let � = (�.1/; : : : ;�.p// denote the mean vector of x and V the covariance matrix.
Denote by y D .x � �/0V�1=2 the standardized vector. Let z be a random vector with the same
distribution as y, but independent of y. Mardia’s skewness measure of x is:

ˇ1 D E
�
.y0z/

�3
: (5)

A fundamental property of a skewness measure is that it is invariant under non-singular transforma-
tions. Mardia’s kurtosis measure is:

ˇ2 D E
�
.y0y/

�4
: (6)

The kurtosis measure is also invariant under non-singular transformations. Mardia’s [2] shows an
application where the normality from two artificially generated samples is tested: one generated
from a symmetric distribution and the other from a skewed one, and the results confirm the appli-
cability of these measures to recognize the deviations from the normal distribution in a sample.
However, Mardia’s measures were designed to measure third-order and fourth-order moment devia-
tions from the class of elliptical symmetric distributions, but were not designed to inform about the
third-order and fourth-order moment properties of elliptical symmetric distributions.

Besides being the standard measure for multivariate skewness and kurtosis, Mardia’s measures
report the same numeric value for some elliptical distributions of different shapes. Therefore, we
develop an algorithm that considers exact tensor moment simulations, and not only exact skewness
and kurtosis simulations.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:825–847
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2. EXACT MEAN-COVARIANCE SIMULATIONS

In the first part of this Section, the methods to simulate random vectors with exact covariance are
examined, with a detailed explanation of one of the most common methods: spectral decomposition.
None of the methods developed until now uses the definition of higher-order moment as a tensor.

Most of the statistical and mathematical concepts behind each of the methods for exact mean-
covariance moment simulations are similar. The two most-used methods for the exact moment
sampling that constrains scenarios are the spectral decomposition method, and the QR decompo-
sition method. These are the two best-known solutions in the academic literature. Both methods
use orthogonal projections. An excellent description of the first method is in [1]. Another reference
for these methods can be found in [12]. The QR decomposition method uses a similar orthogonal
decomposition as the spectral decomposition method, therefore, we briefly describe the spectral
decomposition method for introducing the tensor moment notation. Henceforward, to simplify
notation, we refer to ‘tensor moment’ when using the expression ‘moment’.

2.1. Spectral decomposition method

Define x as a random vector of dimension p, and QX as a matrix of dimensionN�p, of theN samples
of x. The matrix QX has components QX.j; r/; j 2 ¹1; : : : ; N º, r 2 ¹1; : : : ; pº. Define K as the
second sample cumulant|| of QX. From [11], it is known that Kr;s D N�1�j1;j2

QXj1;r QXj2;s; j1; j2 2
¹1; : : : ; N º, �j1;j2 D 1 for j1 D j2, �j1;j2 D �1=.N �1/ for j1 ¤ j2, but it can also be written as:

Kr;s D N
�1

mX
jD1

�
QX.j; r/ � NX.j; r/

� �
QX.j; s/ � NX.j; s/

�
D N�1

�
QXj;r � NXj;r

� �
QXj;s � NXj;s

�
;

using the summation convention as in (1), (2), and (3), and tensor notation as in Definition 1.4
and 1.5. NX is the matrix of m � p with the sample mean of QX repeated on every row, and s 2
¹1; : : : ; pº, j 2 ¹1; : : : ; N º. The standard Monte Carlo simulation method produces samples using
the following equation:

QXj;r D NXj;r C QZj;sAs;r ;

where matrix A satisfies:

Ar;tAs;t D Kr;s;

for t 2 ¹1; : : : ; pº, and QZ is the matrix with N samples from a multivariate standard normal of
dimension p. We can see that the resulting sample second cumulant of QX is approximately the
covariance or cumulant of second-order of x. This approximation has two sources of error, one is
from the mean and the other from the covariance of the sample. The first one can be eliminated if
we subtract the sample mean NZ from QZ:

QXj;r D NXj;r C
�
QZj;s � NZj;s

�
As;r ;

where NZ is the matrix with the mean value of vector z repeated on every row. For the second source
of error, we apply a spectral decomposition method to find a matrix of samples QW of dimension
N � p, using a projection of the original multivariate normal z, and imposing the constraint of
orthogonality over this matrix, that is, QWj;r

QWj;s D Ir;s , where I is the identity matrix.** In this
case, we consider square identity matrices.

||The bold notation for the matrix K is avoided, as we want to preserve tensor notation when referring to moments and
cumulants.

**Ir;s D 1 if r D s, zero otherwise.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:825–847
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Define the first sample without transformations as:

QYj;r D QZj;r � NZj;r ;

and let the matrix QW have the following form:

QWj;r D QYj;rQr;s�
1=2
s;t ;

where the matrix � is a diagonal matrix with the eigenvalues of K and Q is the eigenvector matrix
of K; both � and Q are the result of the spectral decomposition of K as:

Kr;s D Qr;s�r;sQ�1r;s :

It can be shown that the sample:

QXj;r D NXj;r C
p
n QWj;sAs;r ;

will have as a second-order cumulant the matrix K.
Resuming this method, the solution is to express the sample QX as a function of the sample

cumulant K and a random multivariate normal matrix:

QX D f .K; QZ/:

3. EXACT FIRST-ORDER, SECOND-ORDER, THIRD-ORDER, AND FOURTH-ORDER
MOMENT SIMULATIONS

Let QX be a matrix withN samples of a random variable x. Suppose x has mean vector zero,E.X/ D
0. Define M.1/ as the sample first-order moment of this multivariate random variable:

M.1/r D N
�11j QXj;r : (7)

where 1 is a column vector of dimension N filled with ones. In this case, although there are no
common indices on the right-hand side of (7) there must be a sum over the index j to reduce
the second-order tensor QX to the first-order tensor M.1/. Define M.2/ as the second-order sample
moment:

M.2/r;s D N
�1 QXj;r QXj;s;

M.3/ as the third-order sample moment:

M.3/r;s;t D N
�1 QXj;r QXj;s QXj;t :

and M.4/ as the fourth-order sample moment:

M.4/r;s;t;u D N
�1 QXj;r QXj;s QXj;t QXj;u:

Let QY be a random sample of dimension N � p of y. By construction, suppose we want to generate
QY, with a first-order sample moment equal to the tensor cM.1/, a second-order sample moment
equal to the tensor cM.2/, a third-order sample moment equal to the tensor cM.3/, and a fourth-
order sample moment equal to the tensorcM.4/. We use a numerical approach to solve this problem,
definingM.1/r�cM.1/r D 0,M.2/r;s�cM.2/r;s D 0,M.3/r;s;t�cM.3/r;s;t D 0, andM.4/r;s;t;u�cM.4/r;s;t;u D 0 as the set of non-linear equations to be solved.

Definition 3.1
Define by construction a symmetric square matrix A with dimension p�p, with first-order, second-
order, third-order, and fourth-order sample moment M.1/;M.2/;M.3/;M.4/ equal to objective
sample moment cM.1/;cM.2/;cM.3/;cM.4/:

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:825–847
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cM.1/r;s D p
�11jAj;r ; (8)

cM.2/r;s D p
�1Aj;rAj;s; (9)

cM.3/r;s;t D p
�1Aj;rAj;sAj;t ; (10)

cM.4/r;s;t;u D p
�1Aj;rAj;sAj;tAj;u: (11)

This process is defined as a Cholesky tensor decomposition for second-order, third-order, and fourth-
order tensors.

Remark 2
It is important to study the conditions for the existence of the matrix A. It will be important in the
future to study the conditions of uniqueness. Let us study the existence of the third-order tensor
decomposition (10) for the case p D 2. Let A be a unknown objective matrix andcM.3/ a third-order
objective tensor given by the problem:

A D
�
a.1; 1/ a.1; 2/

a.2; 1/ a.2; 2/

	
; cM.3/ D

 cM.3I 1; 1; 1/ cM.3I 1; 1; 2/cM.3I 1; 2; 1/ cM.3I 1; 2; 2/

ˇ̌̌̌ cM.3I 2; 1; 1/ cM.3I 2; 1; 2/cM.3I 2; 2; 1/ cM.3I 2; 2; 2/

!
:

The tensor decomposition generates a set of four non-linear equations. Solving the set of equations
leads us to the final non-linear equation:

b1=3c2 C a.2; 2/c �cM.3I 1; 2; 2/ D 0;

b D
�cM.3I 1; 1; 1/ �cM.3I 2; 2; 2/C a.2; 2/

�
;

c D

0B@�b ˙
q
b2 C 4a.2; 2/cM.3I 1; 1; 2/

2a.2; 2/

1CA ;
(12)

where the solution of the unknown variable a.2; 2/ in (12) will provide the remaining values for A:

a.2; 1/ D a.1; 2/ D
�cM.3I 2; 2; 2/ � a.2; 2/3

�1=3
;

a.1; 1/ D
�cM.3I 1; 1; 1/ � a.2; 1/3

�1=3
:

The non-linear equation (12) could have a solution in R if and only if b2C 4a.2; 2/cM.3I 1; 1; 2/ >
0, and even in that case, we cannot easily confirm that (12) has a solution. In higher dimensions
(p > 2), the non-linear equations will be even more challenging to solve than (12), for this reason,
we use a numerical method to find this decomposition.

3.1. Exact Cholesky tensor decomposition

We generate a random sample QZ from the multivariate standard normal variable Z. This sample
has dimension N � p. Now, the product QZi;rAr;s will have dimension N � p and the first-order,
second-order, third-order, and fourth-order sample moment will be equal to:

QM.1/r D N
�11i . QZA/i;r ;

QM.2/r;s D N
�1. QZA/i;r. QZA/i;s;

QM.3/r;s;t D N
�1. QZA/i;r. QZA/i;s. QZA/i;t ;

QM.4/r;s;t;u D N
�1. QZA/i;r. QZA/i;s. QZA/i;t . QZA/i;u:

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:825–847
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The expected values of these sample statistics are:

E
�
QM.1/r

�
DcM.2/r ;

E
�
QM.2/r;s

�
DcM.2/r;s;

E
�
QM.3/r;s;t

�
DcM.3/r;s;t ;

E
�
QM.4/r;s;t;u

�
DcM.4/r;s;t;u:

where E Œ�� is the expected value. This simulation will have on average the desired first-order,
second-order, third-order, and fourth-order moment cM.1/r ;cM.2/r;s;cM.3/r;s;t , and cM.4/r;s;t;u;
however, to have an exact simulation, we need to apply an orthogonal projection T to
QZ. By construction, we want after the application of T to produce the identity†† tensors
ır1 ; ır1;r2 ; ır1;r2;r3 ; ır1;r2;r3;r4 of the first-order, second-order, third-order, and fourth-order sample
moment of QZT multiplied by N :

1j . QZT/j;r1 D 1r1 ; (13)

. QZT/j;r1. QZT/j;r2 D ır1;r2 ; (14)

. QZT/j;r1. QZT/j;r2. QZT/j;r3 D ır1;r2;r3 ; (15)

. QZT/j;r1. QZT/j;r2. QZT/j;r3. QZT/j;r4 D ır1;r2;r3;r4 ; (16)

with r1; r2; r3; r4 2 ¹1; : : : ; pº. The reason for this application is to generate an orthogonal
projection of QZ.

Proposition 3.1
Let cM.1/, cM.2/, cM.3/, and cM.4/ be the first-order, second-order, third-order, and fourth-order
objective moments. Assume there exists a matrix A of dimension p � p, a result of the Cholesky
tensor decomposition of cM.1/;cM.2/;cM.3/, and cM.4/, such that (8), (9), (10), and (11) hold.
Define QY as the tensor product:

QYj;r D QZj;sTs;tAt;r ; (17)

where QZ is a multivariate standard normal matrix with dimension N �N2. Let T be an application
of dimension N2�p such that (13), (14), (15), and (16) hold. Then, the sample first-order, second-
order, third-order, and fourth-order moments of QY are cM.1/, cM.2/, cM.3/, and cM.4/.

Proof
Let s1; s2; s3; t1; t2; t3 2 ¹1; : : : ; pº. We calculate the sample first-order moment of QY :

N�11j QYj;r D N�11j . QZTA/j;r
D N�11j . QZj;r1Tr1;r2Ar2;r/

D N�1Ar2;r1j . QZj;r1Tr1;r2/

D N�1Ar2;r1j . QZT/j;r2
D N�1Ar2;r1r2 DM.1/r ;

the sample second-order moment of QY :

N�1 QYj;r QYj;s D N�1. QZTA/j;r . QZTA/j;s

D N�1
�
QZj;r1Tr1;r2Ar2;r

� �
QZj;s1Ts1;r2Ar2;s

�
††ır1;r2;r3;r4 D 1 if r1 D r2 D r3 D r4, zero otherwise.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:825–847
DOI: 10.1002/nla



MONTE CARLO APPROXIMATE TENSOR MOMENT SIMULATIONS 833

D N�1Ar2;rAr2;s
�
QZj;r1Tr1;r2 QZj;s1Ts1;r2

�
D N�1Ar2;rAr2;s. QZT/j;r2. QZT/j;r2
D N�1Ar2;rAr2;sır2;r2
D N�1Ar2;rAr2;s DM.2/r;s;

the sample third-order moment of QY:

N�1 QYj;r QYj;s QYj;t D N�1. QZTA/j;r . QZTA/j;s. QZTA/j;t

D N�1
�
QZj;r1Tr1;r2Ar2;r

� �
QZj;s1Ts1;r2Ar2;s

� �
QZj;t1Tt1;r2Ar2;t

�
D N�1Ar2;rAr2;sAr2;t

�
QZj;r1Tr1;r2 QZj;s1Ts1;r2 QZj;t1Tt1;r2

�
D N�1Ar2;rAr2;sAr2;t . QZT/j;r2. QZT/j;r2. QZT/j;r2
D N�1Ar2;rAr2;sAr2;tır2;r2;r2
D N�1Ar2;rAr2;sAr2;t DM.3/r;s;t ;

and the sample fourth-order moment of QY:

N�1 QYj;r QYj;s QYj;t QYj;u D N�1. QZTA/j;r . QZTA/j;s. QZTA/j;t . QZTA/j;u
DN�1. QZj;r1Tr1;r2Ar2;r/. QZj;s1Ts1;r2Ar2;s/. QZj;t1Tt1;r2Ar2;t /. QZj;u1Tu1;r2Ar2;u/

D N�1Ar2;rAr2;sAr2;tAr2;u. QZj;r1Tr1;r2 QZj;s1Ts1;r2 QZj;t1Tt1;r2 QZj;u1Tu1;r2/

D N�1Ar2;rAr2;sAr2;tAr2;u. QZT/j;r2. QZT/j;r2. QZT/j;r2. QZT/j;r2
D N�1Ar2;rAr2;sAr2;tAr2;uır2;r2;r2;r2
D N�1Ar2;rAr2;sAr2;tAr2;u DM.4/r;s;t;u:

�

It has been proved by construction that the sample first-order, second-order, third-order, and
fourth-order moments of QY are exactly cM.1/r ;cM.2/r;s;cM.3/r;s;t , and cM.4/r;s;t;u, assuming we
find matrices A and T.

To generate samples with the first-order, second-order, third-order, and fourth-order approximate
tensor moments, we construct the matrix A such that all four moment conditions are fulfilled:

N�11j QYj;r DM.1/r ;

N�1 QYj;r QYj;s DM.2/r;s;

N�1 QYj;r QYj;s QYj;t DM.3/r;s;t ;

N�1 QYj;r QYj;s QYj;t QYj;u DM.4/r;s;t;u:

4. NUMERICAL METHOD FOR RANDOM SAMPLING WITH APPROXIMATE
FIRST-ORDER, SECOND-ORDER, THIRD-ORDER, AND FOURTH-ORDER MOMENTS

In this Section, we find numerical approximations of matrices A and T. For matrix A; we have the
following set of equations derived from the construction in Section 3:

N�11jAj;r DcM.1/r

H) N�1
pX
jD1

1.j; r/A.j; r/ DcM.1I r/

H)

8̂<̂
:
N�1 .A.1; 1/C A.2; 1/C � � �A.p; 1// DcM.1I 1/

:::

N�1 .A.1; p/C A.2; p/C � � �A.p; p// DcM.1Ip/

;

(18)
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N�1Aj;rAj;s DcM.2/r;s

H) N�1
pX
jD1

A.j; r/A.j; s/ DcM.2I r; s/

H)

8̂<̂
:

N�1 .A.1; 1/A.1; 1/C A.2; 1/A.2; 1/C � � �A.p; 1/A.p; 1// DcM.2I 1; 1/
:::

N�1 .A.1; p/A.1; p/C A.2; p/A.2; p/C � � �A.p; p/A.p; p// DcM.2Ip; p/

;

(19)

N�1Aj;rAj;sAj;t DcM.3/r;s;t

H) N�1
pX
jD1

A.j; r/A.j; s/A.j; t/ DcM.3I r; s; t/

H)

8̂<̂
:

N�1 .A.1; 1/A.1; 1/A.1; 1/C � � � C A.p; 1/A.p; 1/A.p; 1// DcM.3I 1; 1; 1/
:::

N�1 .A.1; p/A.1; p/A.1; p/C � � � C A.p; p/A.p; p/A.p; p// DcM.3Ip; p; p/

;

(20)

and,

N�1Aj;rAj;sAj;tAj;u DcM.4/r;s;t;u

H) N�1
pX
jD1

A.j; r/A.j; s/A.j; t/A.j; u/ DcM.4I r; s; t; u/

H)

8̂<̂
:

N�1 .A.1; 1/ : : :A.1; 1/C � � � C A.p; 1/ : : :A.p; 1// DcM.3I 1; 1; 1/
:::

N�1 .A.1; p/ : : :A.1; p/C � � � C A.p; p/ : : :A.p; p// DcM.4Ip; p; p; p/

;

(21)

where u 2 ¹1; : : : ; pº. To find matrix T in the third-order moments case,‡‡ we apply a similar
algorithm to solve (19) and (20). By construction, we have the following system of non-linear
equations:

N�1. QZT/j;r1. QZT/j;r2. QZT/j;r3. QZT/j;r4 D ır1;r2;r3;r4

H) N�1
NX
jD1

. QZT/.2I j; r1/. QZT/.2I j; r2/. QZT/.2I j; r3/. QZT/.2I j; r4/ D ı.r1; r2; r3; r4/

H)

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

N�1
�
. QZT/.2I 1; 1/. QZT/.2I 1; 1/. QZT/.2I 1; 1/. QZT/.2I 1; 1/C � � �

C . QZT/.2Im; 1/. QZT.2Im; 1/. QZT/.2Im; 1/T/.2Im; 1/
�
D ı1;1;1;1 D 1

N�1
�
. QZT/.2I 1; 1/. QZT/.2I 1; 2/. QZT/.2I 1; 1/. QZT/.2I 1; 1/C � � �

C . QZT/.2Im; 1/. QZT/.2Im; 2/. QZT/.2Im; 1/. QZT/.2Im; 1/
�
D ı.1; 2; 1; 1/ D 0

N�1
�
. QZT/.2I 1; p/. QZT/.2I 1; p/. QZT/.2I 1; p/T/.2I 1; p/C � � �

C . QZT/.2Im;p/. QZT/.2Im;p/. QZT/.2Im;p/T/.2Im;p/
�
D ı.p; p; p; p/ D 1

;

(22)
plus the set of non-linear equations originated from:

N�11j . QZT/j;r1 D 1r1 ; (23)

‡‡For the second-order moments simulations, the matrix T is found with a similar approach.
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N�1. QZT/j;r1. QZT/j;r2 D ır1;r2 ; (24)

N�1. QZT/j;r1. QZT/j;r2. QZT/j;r3 D ır1;r2;r3 : (25)

4.1. Approximate tensor moment algorithm optimization

In Proposition 3.1, it is possible to introduce a change of variables to reduce the iterations and the
number of operations required for a solution. Define ƒ a matrix of dimension N2 � p, such that,

ƒs;r D Ts;tAt;r ; (26)

then the generated sample in (17) transforms into,

QYj;r D QZj;sƒs;r :

As a consequence, instead of having to solve eight sets of equations (18), (19), (20), (21), (22), (23),
(24), and (25), we would need to solve only four sets of equations as:

N�11j . QZƒ/j;r DcM.1/r ; (27)

N�1. QZƒ/j;r. QZƒ/j;s DcM.2/r;s; (28)

N�1. QZƒ/j;r. QZƒ/j;s. QZƒ/j;t DcM.3/r;s;t ; (29)

N�1. QZƒ/j;r. QZƒ/j;s. QZƒ/j;t . QZƒ/j;u DcM.4/r;s;t;u: (30)

4.2. Approximate tensor moment solution

We propose the following one-stage approximation. By symmetry cM.2I r; s/ D cM.2I s; r/,cM.3I r; r; s/ D cM.3I r; s; r/ D cM.3I s; r; r/, and cM.4I r; r; r; s/ D cM.4I r; r; s; r/ DcM.4I r; s; r; r/ D cM.4I s; r; r; r/. In our implementation, we dismiss duplicated equations, then to
calculate the actual number of equations we use combinatorics. The total number of equations is
only a multiset of n elements from p possible elements, where n is the moment order calculated:��

p

1

		
C

��
p

2

		
C

��
p

3

		
C

��
p

4

		
D

�
p

p � 1

	
C

�
p C 1
p � 1

	
C

�
p C 2
p � 1

	
C

�
p C 3
p � 1

	
D

pŠ

.p � 1/Š1Š
C

.p C 1/Š

.p � 1/Š2Š
C

.p C 2/Š

.p � 1/Š3Š
C

.p C 3/Š

.p � 1/Š4Š

D p C
.p C 1/p

2Š
C
.p C 2/.p C 1/p

3Š
C
.p C 3/.p C 2/.p C 1/p

4Š
:

Define a first-order tensor ‚ that contains all the non-linear system of equations (27), (28), (29),
and (30),

‚v D N
�1. QZƒ/j;r �cM.1/r;s; (31)

for v D ¹1; : : : ; pº,

‚v D N
�1. QZƒ/j;r. QZƒ/j;s �cM.2/r;s; (32)

for v D ¹p C 1; : : : ; p C .p C 1/p=2Šº,

‚v D N
�1. QZƒ/j;r . QZƒ/j;s. QZƒ/j;t �cM.3/r;s;t ; (33)
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for v D ¹p C .p C 1/p=2ŠC 1; : : : ; p C .p C 1/p=2ŠC .p C 2/.p C 1/p=3Šº, and,

‚v D N
�1. QZƒ/j;r. QZƒ/j;s. QZƒ/j;t . QZƒ/j;u �cM.4/r;s;t;u; (34)

for v D ¹p C .p C 1/p=2Š C .p C 2/.p C 1/p=3Š C 1; : : : ; p C .p C 1/p=2Š C .p C 2/.p C
1/p=3ŠC .p C 3/.p C 2/.p C 1/p=4Šº.

The following minimization is proposed as a solution for the non-linear systems of equations
(27), (28), (29), and (30):

min
ƒ
k‚kF ; (35)

where k � kF is the Frobenius norm. The optimal solution ‚� of the minimization problem (35) is
proposed as the optimal approximation of Cholesky tensor decompositions and they are used for the
approximate first-order, second-order, third-order, and fourth-order tensor moment simulations. We
solve this system of non-linear equations using the MATLAB optimization toolbox.

4.3. Performance analysis (precision vs. time)

The solution of (35) implies the solution of the non-linear system of equations (27), (28), (29), (30),
and they have p C .p � p/C .p � p � p/C .p � p � p � p/ D p C p2 C p3 C p4 equations.
The duplicate equation’s reduction applied in Section 4.2 diminishes the number of equations for
one evaluation of (35) to

p C .p C 1/p=2ŠC .p C 2/.p C 1/p=3ŠC .p C 3/.p C 2/.p C 1/p=4Š: (36)

For example, for p D 2 we have 14 equations, for p D 3 we have 34 equations. The number of
unknowns in ƒ are N2 � p. For p D 2 there are N2 � 2 unknowns, then the number of unknowns
could be less than the number of equations ifN2 < 7. Selection ofN2 is of great importance for the
performance, with p 6 N2 6 N . A greater value of N2 will increase feasibility of the result, but
it will increase the cost when evaluating the moments of the proposed Monte Carlo tensor solution
as we will have more unknowns to solve. Determining the optimal N2 will depend on the sample
size, dimension, and optimization algorithm used to solve (35). Multiple possible values for N2 are
analyzed in Table I. We solve the system of equations (27), (28), (29), and (30) using the MATLAB
optimization toolbox. The function fsolve(�) is used to find a solution to the systems of non-linear
equations by the least squares method. The Monte Carlo approximate tensor moment simulation
method iterates until the convergence criterion is reached, k‚k < 1 � 10�16, or the maximum
number of function evaluations 30000 � p is reached. One function evaluation of (35) requires
the evaluation of the number of equations calculated in (36). In Table I, we observe that for any
combination of sample size (N ), and sample dimension (p), the selection of N2 D N returns the
most precise result. Interestingly, the algorithm running time for a large N2 D N is in many cases
lower than other combinations (N2 D p; d.N C p/=2e). This result can be due to the existence
of more unknown variables available to fit the required objective tensor moments. We selected for
subsequent simulations N2 D N .

Table I. Cross section study for the optimal N2 values for Monte Carlo approximate tensor moment
simulation for different sample dimensions (p D 2; 5; 10), and sample size (N D 20; 40).

Sample dimension
p D 2 p D 5 p D 10

N2 T ime Error T ime Error T ime Error

Sample size

N D 20
N2 D p 0.33 s 0.5208 2.90 s 0.6056 79.64 s 0.7843

N2 D d.N C p/=2e 2.29 s 0.0876 11.83 s 0.3890 124.85 s 0.1373
N2 D N 0.31 s 2.41e-16 21.45 s 5.61e-16 14.41 s 2.80e-15

N D 40
N2 D p 0.20 s 0.8049 5.05 s 0.9896 86.45 s 1.2989

N2 D d.N C p/=2e 4.15 s 0.1588 26.94 s 0.5613 232.97 s 0.4149
N2 D N 0.55 s 4.89e-16 31.48 s 1.26e-15 69.62 s 4.99e-15
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Table II. Monte Carlo approximate tensor moment mean running time and mean residual error
results for 50 simulations with different initial points and moment objectives. The sample size is
N D 100, sample dimensions are (p D 2; 5) and N2 D N D 100. The objective moments are cal-
culated from samples generated from the multivariate normal standard distribution. Standard errors

of the mean values are reported in parentheses.

Sample dimension

p D 2 p D 5

N2 Mean Time Mean Error Mean Time Mean Error

Sample size N D 100 N2 D N
1.88 s 4.57-14 37.70 s 1.61e-3

(0.114) (1.50-14) (2.425) (1.00e-3)

Table III. Frobenius norm error of the difference between a first-order, second-order,
third-order, and fourth-order objective moments and Monte Carlo tensor moments simu-
lation for different sample dimension (p D 2; 3; 4; 5), and sample size (m D 20; 40; 100).
The objective moments are calculated from samples generated from multivariate normal

standard distribution. Standard errors of the mean values are reported in parentheses.

Sample dimension

p D 2 p D 3 p D 4 p D 5

Mean Error Mean Error Mean Error Mean Error

N D 20
0.0055 0.0110 0.0036 0.0131

(0.0035) (0.0043) (0.0015) (0.0040)

N D 40
0.0001 0.0026 0.0048 0.0064

(0.0001) (0.0017) (0.0021) (0.0033)

N D 100
3.6e-14 0.0007 0.0028 0.0053

(1.1e-14) (0.0003) (0.0015) (0.0022)

As the approximate tensor moment simulation solution is dependent on the initial value, we
generated 50 simulations for different combinations of sample dimension (p D 2; 5) and sample
size (N D 100), and reported results in Table II. The mean time of the Monte Carlo approx-
imate tensor moment simulation is about 1.8 s for p D 2;N D N2 D 100, and 37.7 s for
p D 5;N D N2 D 100. For p D 5, the optimization algorithm evaluated 150000 times the func-
tion (35) and for each evaluation of the function (35), 125 constraint equations are evaluated as in
(36), producing a total of 18750000 equation evaluations in 37.7 s. Table III reports the mean error
when we included the additional sample dimension p D 3; 4, and sample sizes N D 20; 40. The
mean error of the 50 simulations is 5 � 10�3; however, a detailed analysis showed that 79% of the
Monte Carlo approximate tensor moment simulation samples have less than 1 � 10�10 of residual
error, leaving the other remaining 21% samples with higher residual error values (2:2 � 10�2 on
average) that affect the final mean error.

The number of evaluations in (35) seems to grow exponentially with p. In Figure 1, we plot the
time and the residual error of the algorithm for sample dimensions up to p D 30, with N D N2 D
10;. Sub-figure 1(a) shows the total time consumed by the Monte Carlo approximate tensor moment
simulation. Up to the dimension 30, it consumed less than 1000 s. Nevertheless, the time growth is
exponential and this is a limitation of the method. Sub-figures 1(b) and 1(c) plot the performance
of the algorithm in terms of obtained precision versus time. A suggestion for larger dimensions is
to reduce the convergence criterion (for example, 1 � 10�2), or to use heuristics that consider the
relationship between moments for reducing the number of equations in (36).

A performance analysis for increasing N is provided in Figure 2. For N D 2000; p D 2, and
N2 D N , the Monte Carlo approximate tensor moment simulation requires 2032.90 s for the algo-
rithm to converge to a residual error of 0.7314. We remind the reader that in this case, we have to
provide a solution for four objective tensors, from which the largest is the fourth-order moment of
a sample of dimension 2 � 2000. The algorithm will be constrained by the sample size (N ), as we
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Figure 1. Monte Carlo approximate tensor simulations time and precision performance for increasing sample
dimensions (p D 2; : : : ; 30): (a) Monte Carlo approximate tensor moment simulations running time for
different sample dimensions (p D 2; : : : ; 30); (b) Monte Carlo approximate tensor moment simulations
running time versus residual error for different sample dimensions (p D 2; 6; 10; 14); (c) Monte Carlo
approximate tensor moment simulations running time versus residual error for different sample dimensions

(p D 18; 22; 26; 30).

have selected N2 D N as the optimal first dimension of the unknown matrix ƒ. We suggest for
larger M a solution using random orthogonal matrix theory as in [1], that is beyond this research.

4.4. Non-normal numerical examples

Our method provides a solution for generating simulations with a desired tensor moment without
having to specify the generating distribution. A main subject for the application of the method is
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Figure 2. Monte Carlo approximate tensor simulations time and precision performance for increasing sample
size (N D 500; 1000; 1500; 2000). Sample dimension is p D 2, N2 D N .
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Figure 3. Scatter plots of the MCTMS method generated samples with BVSN distribution (blue cross) and
of MCTMS method generated samples with modified third-order tensor moment (red circle): (a) Bivariate
samples generated with a high positive value on the third-order objective moment OM.3/2;2; (b) Bivariate

samples generated with a high negative value on the third-order objective moment OM.3/2;2.

in cases where samples of non-normal multivariate distributions need to be generated when we
know only their multivariate moments. In this Section, we analyze two examples when non-normal
sampling is required.

Example 1
In the first experiment, we study the results when the third-order moment is increased tocM.3I 2; 2; 2/ D 0:80. We generated a numerical example with the first-order objective momentcM.1/ D 0, and the second-order, and third-order objective moments cM.2/;cM.3/ resulting from
calculating the sample moments of a p D 2 dimensional normal standard random vector QX of
N D 1000 samples. With these objective moments, we generated Monte Carlo tensor moment sim-
ulation samples. Sub-figure 3(a) plots the resulting samples. In blue crosses are the samples . QZƒ.1//
generated with the Monte Carlo tensor moment simulation method algorithm in Section 4.2, having
as objective cM.1/;cM.2/;cM.3/. Fourth-order tensor moments are not considering in the optimiza-
tion for this example. In red crosses are the samples . QZƒ.2// generated with the same algorithm,
the same first-order and second-order objective moments, but the third-order moment of the sec-
ond variable increased from cM.3I 2; 2; 2/ D 0:18 to cM.3I 2; 2; 2/ D 0:80. Both tensor simulations
achieved convergence of error < 1 � 10�16. The resulting samples in red show an outlier point
generated to achieve the increase in the second variable X2 third-order moment. The correlation
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Figure 4. Scatter plots of the generated samples with MGH distribution (blue cross) and of MCTMS method
generated samples with modified third-order tensor moment (red circle): (a) Bivariate samples generated
with MCTMS from a MGH distribution with a positive third-order objective moment; (b) Bivariate samples

generated with MCTMS from a MGH distribution with a negative third-order objective moment.

in the red samples seems to increase, but the outlier point compensates, having a final correlation
similar to the blue samples.

A second experiment is conducted changing the third-order moment to a negative value:cM.3I 2; 2; 2/ D �0:80 for . QZƒ.2//. In sub-figure 3(b), we observe the resulting samples in red. In
this case, the outlier point moves downward, to compensate for the required negative third-order
objective moment of the second variable X2.

These results are useful for analyzing extreme events that occur in nature such as earthquakes,
the sudden spread of epidemic diseases, network failures, and stock market crashes.

Example 2
In this example, we considered multivariate generalized hyperbolic distributions. Barndorff-Nielsen
in [13] and [14] was the first to consider distributions with the logarithm of the density function
being an hyperbola, that he defined as generalized hyperbolic distribution (GH). GH distributions
can be expressed as scale-variance mixtures of a normal distribution and a generalized inverse Gaus-
sian. This GH distribution emerged in nature when aeolian sand deposits were studied. For our
example, we use the multivariate generalized hyperbolic (MGH) sampling method as in [15] to gen-
erate QX. The objective moments cM.1/;cM.2/;cM.3/, and cM.4/ are calculated from QX. Two Monte
Carlo tensor moment simulation (MCTMS) samples are produced with p D 2;N D N2 D 1000,
the first . QZƒ.1// with cM.1/;cM.2/;cM.3/, and cM.4/ objective moments and the second . QZƒ.2//
with cM.1/;cM.2/;�cM.3/, and cM.4/, being the third-order moment the only different between all
the objective moments. Figure 4 shows the result. In sub-figure 4(a), we have the MCTMS produces
samples that replicate the original sample QX. The residual error is 8:90 � 10�11. In sub-figure 4(a)
the MCMTS produces a sample symmetrically opposite when considering negative third-order ten-
sor moments. The residual error is larger in 2.4175, nevertheless the constraint of having a negative
value in all third-order moments seems not to affect the result, as the residual error of the third-
order and fourth-order moment are 0:3155; 0:0472, respectively. The second-order moment of the
MCTMS sample seems to be more affected as its residual error is 1.1924. The results demon-
strate the MCTMS method could be used to sample non-normal distributions with asymmetries and
heavy tails.

5. TENSOR DECOMPOSITION METHODS COMPARISON

The solution of the exact-tensor and approximate-tensor moment problem demands a symmetric
tensor decomposition as in (8), (9), (10), and (11), or as in (27), (28), (29), and (30). Although our
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method not only solves a symmetric tensor decomposition, but also a statistical sampling problem,
we review other tensor decomposition methods that could be applied for tensor moment simula-
tion. Previous research solved tensor decompositions in the non-symmetric case. Kolda and Bader
[16] present a review of several methods. In Section 5.1, we transform the non-symmetric tensor
decomposition classical notation into the tensor notation of this paper, giving insights into possible
extensions of our work, and in Section 5.2 our Monte Carlo approximate tensor moment simulation
is compared with actual symmetric tensor decomposition methods.

5.1. Non-symmetric tensor decomposition: relationship between approximate moment simulations
and multi-linear singular value decomposition

The spectral decomposition method for exact covariance simulation is based on singular value
decomposition (SVD). An approach to solve the exact simulation problem with a tensor is to find an
equivalent definition of SVD in tensor calculus. The two most important tensor decomposition meth-
ods are CANDECOMP/PARAFAC and the TUCKER decomposition. The CANDECOMP/PARAFAC
tensor decomposition is based on the idea of expressing the n-th-order tensor as the sum of finite
rank-one tensors. In the later part of this Section, we define rank-one tensors. This concept is intu-
itively similar to the rank of a matrix. Then decomposing a tensor into several rank-one tensors
is similar to decomposing a matrix into several vectors, as SVD does. The TUCKER decomposi-
tion is a high-order tensor form of matrix principal component analysis (PCA). In [17] and [18] a
generalization of SVD for tensors is developed, termed multi-linear singular value decomposition
(MSVD). MSVD is based on the TUCKER decomposition. They highlight the expansion of tensors
in the development of higher-order statistics, especially in higher-order moments and cumulants. On
the other hand, SVD is one of the most useful methods of linear algebra.

Definition 5.1
The TUCKER decomposition consists of decomposing a third-order tensor A.3/ into four compo-
nents:

A.3/i1;i2;i3 D S.3/j1;j2;j3Ui1;j1Vi2;j2Wi3;j3 ; (37)

where j1 2 ¹1; : : : ; J1º, j2 2 ¹1; : : : ; J2º, j3 2 ¹1; : : : ; J3º, i1 2 ¹1; : : : ; I1º, i2 2 ¹1; : : : ; I2º,
i3 2 ¹1; : : : ; I3º, Ui1;j1 ;Vi2;j2Wi3;j3 are the entries of three orthogonal matrices, and S.3/j1;j2;j3
is an orthogonal tensor, that is:

S.3/i1;i2;j1S.3/i1;i2;j2 D S.3/i1;j1;i3S.3/i1;j2;i3 D S.2/j1;i2;i3S.3/j2;i2;i3 D

²
0 for j1 ¤ j2
1 for j1 D j2

:

Using the concept of orthogonal tensor and TUCKER decomposition as in Definition 5.1,
[18] formulated a tensor singular value decomposition equivalent of the matrix singular value
decomposition (SVD):

Definition 5.2 (Multilinear Singular Vector Decomposition - MSVD)
A n-th-order tensor A, can be decomposed as the product:

A.n/i1;:::;in D S.n/j1;:::;jnU1j1;i2;:::;inU2i1;j2;i3;:::;in : : :Uni1;:::;in�1;jn ;

where U1; : : : ;Un are unitary matrices, i.e. Ui0Ui D UiUi0 D I; i D ¹1; : : : ;nº and S is a n-th-order
tensor with the property of all sub-tensors being orthogonal as in Definition 5.1.

Nevertheless, the MSVD produces a decomposition with second-order tensors Ui; i 2 ¹1; : : : ;nº,
that are orthogonal in pairs. To achieve the decomposition in (8), (9), (10), and (11), we will need the
tensors Uj to be orthogonal in triplets and orthogonal in n-tuplets, in case we would like to extend
Proposition 3.1 for higher-order moments exact simulation. An extension to our work is suggested
as a MSVD that could accomplish orthogonality in n-tuplets.
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5.2. Symmetric tensor decomposition: modified alternating least squares (ALS) and partial
column-wise least squares (PCLS) methods

A popular tensor decomposition method for the non-symmetrical case is the alternating least squares
(ALS) method. As the symmetric tensor decomposition is a special case of tensor decomposition,
we can apply ALS [19, 20]. In [21], a tensor decomposition method that exploits symmetry is
presented. Nevertheless, Brachat et al.’s method is based in writing an homogeneous polynomial
associated with the symmetric tensor. For solving a tensor moments problem, the size of the sample
could be very large (N D 2000), implying a large degree of the homogeneous polynomial, making
[21]’s method impractical.

More recently, [22] proposed an iterative method denoted as a partial column-wise least squares
(PCLS) method. PCLS is an improvement on the ALS method when considering partial symmetric
tensors. When solving the symmetric tensor decomposition in (27), (28), (29), and (30), it is neces-
sary to decompose four symmetric tensors at the same time. The four tensors parallel decomposition
pose a problem for ALS and PCLS methods, because they consider only one of the tensors decompo-
sition at the same time. Additionally, the PCLS method in [22] considers only even mode symmetric
decompositions (second-order and fourth-order), excluding odd mode decomposition such as the
fully symmetrical third-order tensor moment decomposition in (29). We developed a modified ver-
sion of PCLS for solving problems (27), (28), (29), and (30) that incorporates third-order tensor
symmetry. Three versions of PCLS are defined for comparison purposes:

� PCLS q SYMM is defined as an iterative version of PCLS that considers symmetry in q of the
modes of the tensors to decompose, for q D 2; 3; 4.

The PCLS 2 SYMM algorithm generates matrices A;C, and D on each iteration and the objective
function to minimize is:

kcM.1/r �N
�11j . QZA/j;rkF C kcM.2/r;s �N

�1. QZA/j;r. QZA/j;skF

C kcM.3/r;s;t �N
�1. QZA/j;r. QZA/j;s. QZC/j;tkF

C kcM.4/r;s;t;u �N
�1. QZA/j;r. QZA/j;s/. QZC/j;t C . QZD/j;ukF :

After each minimization iteration, matrices are equated: C D D D A. PCLS 3 SYMM algorithm
generates matrices A and D on each iteration and the objective function to minimize is:

kcM.1/r �N
�11j . QZA/j;rkF C kcM.2/r;s �N

�1. QZA/j;r. QZA/j;skF

C kcM.3/r;s;t �N
�1. QZA/j;r. QZA/j;s. QZA/j;tkF

C kcM.4/r;s;t;u �N
�1. QZA/j;r. QZA/j;s/. QZA/j;t C . QZD/j;ukF :

After each minimization iteration, matrices are equated: D D A. PCLS 4 SYMM algorithm
generates matrix A on each iteration and the objective function to minimize is:

kcM.1/r �N
�11j . QZA/j;rkF C kcM.2/r;s �N

�1. QZA/j;r. QZA/j;skF

C kcM.3/r;s;t �N
�1. QZA/j;r. QZA/j;s. QZA/j;tkF

C kcM.4/r;s;t;u �N
�1. QZA/j;r. QZA/j;s/. QZA/j;t C . QZA/j;ukF

In Figure 5, we compare the performance, precision versus time, of the MCTMS method against
ALS, PCLS 2 SYMM, PCLS 3 SYMM, and PCLS 4 SYMM methods. In sub-figure 5(a) and 5(b),
we show the results of a numerical example of tensor moment simulation with p D 2;N D N2 D
100. In sub-figure 5(a), it can be seen that the PCLS 4 SYMM algorithm has better performance
against ALS, PCLS 2 SYMM, and PCLS 3 SYMM, who seem to be in the same group of perfor-
mance. It seems natural that when increasing the symmetries considered, the performance of the
algorithm will improve, but this only happened for PCLS 4 SYMM. In sub-figure 5(b), we com-
pare the MCTMS against PCLS 4 SYMM. The results demonstrate the performance improvement
in precision and time by the MCTMS. In sub-figure 5(c) and 5(d), we have the same numerical
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Figure 5. Time and precision results for ALS, PCLS (2,3,4 SYMM), and MCTMS. The objective moments
are calculated from samples generated from multivariate normal standard distribution: (a) Algorithm time
and precision results for ALS, PCLS (2,3,4 SYMM), with p D 2, N D 100, N2 D 100; (b) Time and
precision results for PCLS (4 SYMM), and MCTMS, with p D 2, N D 100, N2 D 100; (c) Algorithm
time and precision results for ALS, PCLS (2,3,4 SYMM), with p D 5, N D 100, N2 D 100; (d) Time and

precision results for PCLS (4 SYMM), and MCTMS, with p D 5, N D 100, N2 D 100.

example with p D 5;N D N2 D 100, and the results in terms of performance are repeated as in
the case of samples of lower dimension (p D 2). When analyzing the results we observe the ALS
and PCLS q SYMM methods do not converge to a required precision because of the nature of the
objective tensor. They only consider partial symmetry in most cases, and in the case of PCLS 4
SYMM the objective function is univariate, compared with the multivariate function evaluated by
the MCTMS. The same negative condition of having a multivariate function to minimize in (35) for
the MCTMS method in terms of very high dimensions (p > 50) creates an advantage for problems
of medium-large dimensions against iterative methods such ALS and PCLS.

6. APPROXIMATE N -TH-ORDER MOMENT SIMULATIONS

The Monte Carlo approximate first-order, second-order, third-order, and fourth-order tensor moment
simulations method presented in Sections 3 and 4 is quite general and can be extended for an approx-
imate n-th-order tensor moment algorithm. Following Section 4.2, we define a first-order tensor
‚v as:

‚v D N
�1. QZƒ/j;r1 : : : . QZƒ/j;rq �cM.q/r1;:::;rq ; (38)

for q D ¹1; : : : ; nº, and v D
°
1C

PqDn�1
qD1

.pCq�1/Š
qŠ

; : : : ;
PqDn
qD1

.pCq�1/Š
qŠ

±
:
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Figure 6. MCTMS time and precision performance for an increasing objective moment order (n D 2; : : : ; 10).
Sample dimension is p D 2, N D 5, N2 D N .

The following minimization is proposed as a solution for the n-th-order tensor moment:

min
ƒ
k‚kF : (39)

The general algorithm was tested for n D 2; : : : ; 10. In Figure 6,the performance of the Monte
Carlo n-th-order tensor moment for p D 2;N D N2 D 5 is presented. Generalizing moment calcu-
lations for a n-th-order moment produces a reduction in the performance. For n D 4, the n-th-order
tensor moment simulation represents the first-order, second-order, third-order, and fourth-order ten-
sor moment simulation as in Section 4.2. We observe that it takes approximately 3 s, compared with
the 0.31 s for the same problem in (35). This difference is due to the generalization in the implemen-
tation. Nevertheless, the observed precision demonstrates that it is possible to produce simulations
with objective tensor moments up to an arbitrary order n.

7. APPLICATION FOR PORTFOLIO RISK ASSESSMENT: VALUE-AT-RISK (VAR)

Risk measurement is fundamental for a portfolio manager and exploring the sensitivity of the
portfolio’s risk to changes in the weights of its components will be part of this assignment. The
standard measure for measuring market risk adopted by the industry is the VaR. There are basically
three methods for calculating the VaR: historical methods, parametric methods like normal VaR, and
Monte Carlo simulation. The first method does not allow us to measure extreme events, unless they
are part of the history of the asset. Even in that case, we do not have control over the scale of the tail
event. Parametric methods are perfect for sensitivity analysis, but we will need to fit a parametric
distributions and some errors could be acquired in this process. Additionally, parametric distribu-
tions, like the normal distribution, do not acknowledge the presence of some higher-order moments
deviations in the data. In this case, the Monte Carlo simulations will suit the needs of the sensitivity
analysis. The Monte Carlo approximate first-order, second-order, and third-order tensor moment
simulations will offer an advantage over classical exact first-order and second-order moments sim-
ulation, like VaR, when measuring risk. We explore an example of the VaR of a portfolio.

Let us define a portfolio with three assets, ! D .!.1/;!.2/;!.3//. Assume that the density of
the asset’s returns follows a multivariate Student-t distribution, with � D 3 degrees of freedom, and
parameter,

† D

0@ 1 0:8 0:8

0:8 1 0:8

0:8 0:8 1

1A :
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Figure 7. Scatter plot of sample returns of the market (blue), and of MCTMS method generated samples:
(a) Scatter plot of returns of Student-t generated samples (blue cross) and of MCTMS method generated
samples (red circle) between the first and the second component; (b) Scatter plot of returns of Student-t
generated samples (blue cross) and of MCTMS method generated samples (red circle) between the first and
the third component; (c) Scatter plot of returns of Student-t generated samples (blue cross) and of MCTMS

method generated samples (red circle) between the second and the third component.
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A simulated vector of samples QX with N D 100 days is generated, this vector represents the data
observed by the portfolio manager, and has a resulting mean � D .0:025;�0:030; 0:084/, and
covariance,

V D

0@ 2:33 2:23 2:122:23 3:76 2:92

2:12 2:92 3:20

1A :
We calculate the 1-day VaR at the 99% confidence level of the sample for three different weights’
combinations of the portfolio: !A D .0:9; 0:05; 0:05/;!B D .0:05; 0:9; 0:05/; and !C D
.0:05; 0:05; 0:9/, with resulting VaRA D 3:96%, VaRB D 4:01%, and VaRC D 5:35%. The third
portfolio has a higher VaR, although the variance of the third asset is lower than the variance of the
second asset, as a result of large third-order moments present in the sample. Figure 7 shows three
scatter plots of the market returns (blue cross) from QX, where we can see the bias of the returns,
from the first and second assets towards the third asset. As the market distribution is unknown
for portfolio manager, we generate a Monte Carlo approximate first-order and second-order ten-
sor moment simulation of 100-days QZ, with the parameters �;V, extracted from the market sample
QX, following the QR decomposition algorithm described in [3]. The VaR of the resulting sample QZ
for the three scenarios is: VaRA D 2:93%, VaRB D 3:53%, and VaRC D 3:71%. The three sce-
narios are underestimated by the exact first-order and second-order moments methodology. Now,
we generate a 100-days sample QY, applying the methodology described in Section 4. The resulting
VaR for the three scenarios are: VaRA D 3:59%, VaRB D 3:71%, and VaRC D 4:53%. Although
our methodology still underestimates the real values, it over-performs the methodology of Monte
Carlo approximate first-order and second-order tensor moments simulation, improving from a 77%
of accuracy of the exact first-order and second-order moments method to a 89% of accuracy of the
real VaR value on average.

8. CONCLUSIONS

A methodology to generate samples with a Monte Carlo approximate first-order, second-order, third-
order, and fourth-order tensor moment has been presented. The methodology is based on the theory
of tensors. The first step of the algorithm is to generate a multivariate standard normal (MVSN)
sample QZ. Then the algorithm uses the first-order, second-order, third-order, and fourth-order objec-
tive moments, and an extension of the Cholesky decomposition to tensors of arbitrary dimension
for generating a set of non-linear equations with the suggested solution sample QX D QZƒ. The sys-
tem of non-linear equations is solved, and the equivalent Cholesky tensor decomposition solution
is provided. The algorithm was tested in a MATLAB environment, and the functions for solving
non-linear equations provided by MATLAB were used. The results demonstrated that the method-
ology can transform the generated sample QX to have moments close to objective moments at a
desired residual level

�
error < 1 � 10�16

�
. Extensions to our work include providing the structure

of the non-linear problem to the optimization software (Jacobian) and testing another optimization
software for the solution of the system of non-linear equations.
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